A new approximation technique for div-curl systems
نویسندگان
چکیده
منابع مشابه
A new approximation technique for div-curl systems
In this paper, we describe an approximation technique for divcurl systems based in (L2(Ω)3) where Ω is a domain in R3. We formulate this problem as a general variational problem with different test and trial spaces. The analysis requires the verification of an appropriate inf-sup condition. This results in a very weak formulation where the solution space is (L2(Ω))3 and the data reside in vario...
متن کاملDiv-Curl weighted thin plate splines approximation
The paper deals with Div-Curl approximation problem by weighted thin plate splines. The weighted thin plate splines are an extension of the well known thin plate splines and are radial basis functions which allow the approximation and interpolation of a scalar functions from a given scattered data. We show how the weighted thin plate splines may also be used for the approximation and interpolat...
متن کاملA least-squares method for axisymmetric div-curl systems
We present a negative-norm least-squares method for axisymmetric divcurl systems arising from Maxwell’s equations for electrostatics and magnetostatics in three dimensions. The method approximates the solution in a two-dimensional meridian plane. To achieve this dimension reduction, we must work with weighted spaces in cylindrical coordinates. In this setting, a stable pair of approximation spa...
متن کاملA mixed method for axisymmetric div-curl systems
We present a mixed method for a three-dimensional axisymmetric div-curl system reduced to a two-dimensional computational domain via cylindrical coordinates. We show that when the meridian axisymmetric Maxwell problem is approximated by a mixed method using the lowest order Nédélec elements (for the vector variable) and linear elements (for the Lagrange multiplier), one obtains optimal error es...
متن کاملDifferential geometry and multigrid for the div-grad, curl-curl and grad-div equations
This paper is concerned with the application of principles of differential geometry in multigrid for the div-grad, curl-curl and grad-div equations. First, the discrete counterpart of the formulas for edge, face and volume elements are used to derive a sequence of a commuting edge, face and volume prolongator from an arbitrary partition of unity nodal prolongator. The implied coarse topology an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 2003
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-03-01616-8